



# ULTRA-LOW POWER OSCILLATOR 1-26MHz

### SERIES "ULPO"

### **FEATURES**

- + Ultra Low Power High Precision Oscillator for Low Cost
- + Excellent long time reliability
- + Ultra-small 1.5 mm x 0.8 mm package
- + 1 to 26 MHz with 6 decimal places of accuracy
- + Ultra low power consumption of 50 µA at 2.048 MHz
- + Operating temperature from -40°C to 85°C (ask for -40/+105°C)
- + RoHS and REACH compliant, Pb-free, Halogen-free and Antimonyfree / MSL1@260°

### **DESCRIPTION AND APPLICATIONS**

The ULPO is the industry's smallest and the lowest power MHz oscillator. With it's ultra low power consumption, the ULPO enables longer battery life time for a wearable, IoT or mobile device compared to a quartz-based oscillator or resonator.

The combination of lowest power, smallest package and flexible output frequency makes it ideal for power sensitive and space constrained applications including:

+ Smart Phones

Battery powered devices

- + Tablets+ Ultra-Small Notebook PC
- + GPS + Smart Metering + Sport video cams
  - + Home Automation
- Health and Medical monitoring
- + Wearables + IoT devices
- + Hearing aids

### GENERAL DATA<sup>[1,2]</sup>

| PARAMETER AND CONDITIONS          | SYMBOL        | MIN.        | TYP. | MAX. | UNIT | CONDITION                                                                                                                                                                    |
|-----------------------------------|---------------|-------------|------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FREQUENCY RANGE                   |               |             |      |      |      |                                                                                                                                                                              |
| Output Frequency Range            | F             | 1           | -    | 26   | MHz  | Standard frequencies (See Table 1.)                                                                                                                                          |
| FREQUENCY STABILITY AND AGING     |               |             |      |      |      |                                                                                                                                                                              |
| Initial Tolerance                 | F_tol         | -15         | -    | +15  | PPM  | Frequency offset at 25°C post reflow                                                                                                                                         |
| Frequency Stability               | F_stab        | -100        | -    | +100 | PPM  | Inclusive of initial tolerance, and variations over operating temperature, rated power supply voltage and output load. Contact PETERMANN-TECHNIK for ±25 or ±50 ppm options. |
| First Year Aging                  | F_1 year      | -3          | -    | +3   | PPM  | At 25°C                                                                                                                                                                      |
| OPERATING TEMPERATURE RANGE       |               |             |      |      |      |                                                                                                                                                                              |
| Operating Temperature Range       | T_use         | -20         | -    | +70  | °C   | Extended Commercial                                                                                                                                                          |
|                                   |               | -40         | -    | +85  | °C   | Industrial.<br>Contact PETERMANN-TECHNIK for -40°C to 105°C option.                                                                                                          |
| Storage Temperature Range         | T_stor        | -55         | -    | +125 | °C   | Storage                                                                                                                                                                      |
| SUPPLY VOLTAGE AND CURRENT CONSUM | <b>MPTION</b> |             |      |      |      |                                                                                                                                                                              |
| Supply Voltage                    | VDD           | 1.62        | 1.8  | 1.98 | ۷    |                                                                                                                                                                              |
|                                   |               | 2.25        | -    | 3.63 | V    | Any voltage from 2.25 to 3.63V.                                                                                                                                              |
| Current Consumption               | loo           | -           | 60   | -    | μA   | f = 3.072 MHz, V <sub>DD</sub> = 1.8V, no load                                                                                                                               |
|                                   |               | -           | 110  | 130  | μA   | f = 6.144 MHz, V <sub>DD</sub> = 1.8V, no load                                                                                                                               |
|                                   |               | -           | 230  | 270  | μA   | f = 6.144 MHz, V <sub>DD</sub> = 1.8V, 10 pF load                                                                                                                            |
|                                   |               | -           | -    | 160  | μA   | f = 6.144 MHz, V <sub>DD</sub> = 2.25V to 3.63V, no load                                                                                                                     |
|                                   |               | -           | 160  | -    | μA   | f = 12 MHz, V <sub>DD</sub> = 1.8V, no load                                                                                                                                  |
| Standby Current                   | l_std         | -           | 0.7  | 1.3  | μA   | $V_{\text{DD}}$ = 1.8V, ST pin = HIGH, output is weakly pulled down                                                                                                          |
|                                   |               | -           | -    | 1.5  | μA   | $V_{\text{DD}}$ = 2.25V to 3.63V, ST pin = HIGH, output is weakly pulled down                                                                                                |
| LVCMOS OUTPUT CHARACTERISTICS     |               |             |      |      |      |                                                                                                                                                                              |
| Duty Cycle                        | DC            | 45          | -    | 55   | %    |                                                                                                                                                                              |
| Rise/ Fall Time                   | T_r, T_f      | -           | 4    | 8    | ns   | VDD = 1.8V, 20% - 80%. Contact PETERMANN-TECHNIK for other programmable rise/fall options                                                                                    |
|                                   |               | -           | -    | 8    |      | Vod = 2.25V to 3.63V, 20% - 80%. Contact<br>PETERMANN-TECHNIK for other programmable rise/fall<br>options                                                                    |
| Output High Voltage               | VOH           | <b>90</b> % | -    | -    | VDD  | IOH = -0.5 mA (VDD = 1.8V)<br>IOH = -1.2 mA (VDD = 2.25V to 3.63V)                                                                                                           |
| Output Low Voltage                | VOL           | -           | -    | 10%  | VDD  | IOL = 0.5 mA (V <sub>DD</sub> = 1.8V)<br>IOH = 1.2 mA (V <sub>DD</sub> = 2.25V to 3.63V)                                                                                     |
|                                   |               |             |      |      |      |                                                                                                                                                                              |





### **GENERAL DATA (continued)**

| PARAMETER AND CONDITIONS         | SYMBOL   | MIN. | TYP. | MAX. | UNIT | CONDITION                                                                                       |
|----------------------------------|----------|------|------|------|------|-------------------------------------------------------------------------------------------------|
| INPUT CHARACTERISTICS            |          |      |      |      |      |                                                                                                 |
| Input High Voltage               | VIH      | 80%  | -    |      | VDD  |                                                                                                 |
| Input Low Voltage                | VIL      | -    | -    | 20%  | VDD  |                                                                                                 |
| Input Slew Rate                  | In-slew  | 10   | -    | -    | V/µs |                                                                                                 |
| Input Pull-down Impedance        | Z_in     | 300  | -    | -    | kΩ   | Active mode (ST pin = LOW), VDD = 1.8V                                                          |
|                                  |          | 270  | -    | -    | kΩ   | Active mode (ST pin = LOW), $V_{DD} = 2.25V$ to $3.63V$                                         |
|                                  |          | 2.5  | -    | -    | ΜΩ   | Standby mode (ST pin = HIGH), VDD = 1.8V                                                        |
|                                  |          | 1.3  | -    | -    | ΜΩ   | Standby mode (ST pin = HIGH), $V_{DD}$ = 2.25V to 3.63V                                         |
| LVCMOS OUTPUT (STANDARD VERSION) |          |      |      |      |      |                                                                                                 |
| Startup Time                     | T_start  | -    | 75   | 150  | ms   | Measured from the time $V_{\text{DD}}$ reaches 90% of its final value                           |
| Startup Time                     | T_stdby  | -    | -    | 20   | μs   | Measured from the time ST pin crosses 50% threshold                                             |
| Resume Time                      | T_resume | -    | 2    | 3    | ms   | Measured from the time ST pin crosses 50% threshold                                             |
| JITTER PERFORMANCE               |          |      |      |      |      |                                                                                                 |
| RMS Period Jitter                | T_jitt   | -    | 75   | 110  | ps   | f = 6.144 MHz, V <sub>DD</sub> = 1.8V                                                           |
|                                  |          | -    | -    | 110  | ps   | f = 6.144 MHz, V <sub>DD</sub> = 2.25V to 3.63V                                                 |
| RMS Phase Jitter                 | T_phj    | -    | 0.8  | 2.5  | ns   | f = 6.144 MHz, Voo= 1.8V,<br>Integration bandwidth = 100 Hz to 40 kHz <sup>[2]</sup>            |
|                                  |          | -    | -    | 2.5  | ns   | f = 6.144 MHz, Vod = 2.25V to 3.63V,<br>Integration bandwidth = 100 Hz to 40 kHz <sup>[2]</sup> |

Notes:

1. Current consumption with load is a function of the output frequency and output load. For any given output frequency, the capacitive loading will increase current consumption equal to C\_load\*Voi\*f(MHz).

2. Max spec inclusive of 25 mV peak-to-peak sinusoidal noise on VDD. Noise frequency 100 Hz to 20 MHz.

3. Do not use cleaning baths operating at ultrasonic frequencies.

#### **TABLE 1. STANDARD FREQUENCES**

| STANDARD FREQUENCIES |            |  |  |
|----------------------|------------|--|--|
| 2.048 MHz            | 12.288 MHz |  |  |
| 4 MHz                | 16 MHz     |  |  |
| 6.144 MHz            | 19.2 MHz   |  |  |
| 8 MHz                | 24 MHz     |  |  |
| 12 MHz               | 26 MHz     |  |  |

### **PIN DESCRIPTION**

| PIN | SYMBOL | I/0    | FUNCTIONALITY                                                                                                                                |
|-----|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | ST     | Input  | L: Specified frequency output<br>H: Output is low ( weak pull down). Device goes to<br>the standby mode.<br>Supply current reduces to I_std. |
| 2   | OUT    | Output | LVCMOS clock output                                                                                                                          |
| 3   | VDD    | Power  | Supply voltage. Bypass with a $0.01 \mu F$ X7R capacitor.                                                                                    |
| 4   | GND    | Power  | Connect to ground                                                                                                                            |

#### FIGURE 1. PIN ASSIGNMENTS (TOP VIEW)









#### DEVICE OPERATING MODES AND OUTPUTS

The ULPO supports  $\leq 0.7 \mu$ A standby mode for battery-powered and other power sensitive applications. The switching between the active and standby modes is controlled by the logic level on the ST pin.

#### TABLE 2. OPERATING MODES AND OUTPUT STATES

| ST Pin | Mode                                  | OUTPUT                                 | Max Current<br>Consumption |
|--------|---------------------------------------|----------------------------------------|----------------------------|
| LOW    | Active                                | Specified<br>frequency                 | 60 μA @ 3.072 MHz          |
| FLOAT  | Active with 200 kΩ internal pull-down | Specified<br>frequency                 | 60 μA @ 3.072 MHz          |
| HIGH   | Standby                               | Hi-Z pulled-down with<br>1MΩ impedence | 1.3 µA                     |

#### ACTIVE MODE

The ULPO operates in the active mode when the ST pin is at logic LOW or FLOAT. In the active mode, the device uses the on-chip frequency synthesizer to generate an output from the internal resonator reference. The frequency of the output is factory programmed based on the device ordering code.

#### **STANDBY MODE**

The ULPO operates in the standby mode when the ST pin is at logic HIGH. In the standby mode, all internal circuits with the exception of the oscillator circuit and the ST pin detection logic are turned off to reduce power consumption. While in standby mode, the input impedance of the ST pin is increased to further reduce system level power consumption. The output driver of the device in the standby mode is weakly pulled-down with a 1 M $\Omega$  impedance.

#### **OUTPUT DURING STARTUP AND RESUME**

The ULPO starts up with the output disabled. The output is enabled once all internal circuit blocks are active, and logic LOW or FLOAT is detected on the ST pin.

As shown in Table 2, logic HIGH at ST pin forces the ULPO into "standby" state, causing the output to disable. Upon pulling ST pin LOW, the device enters "resume" state, keeping the output disabled. Once "resume" state ends, the device output enables. The first clock pulse after startup or resume is accurate to the rated stability.

#### LOW POWER DESIGN GUIDELINES

For high EM noise environments, we recommend the following design guidelines:

- Place oscillator as far away from EM noise sources as possible (e.g., high-voltage switching regulators, motor drive control).
- + Route noisy PCB traces, such as digital data lines or high di/dt power supply lines, away from the oscillator.
- + Place a solid GND plane underneath the oscillator to shield the oscillator from noisy traces on the other board layers.

#### MANUFACTURING GUIDELINES

- No Ultrasonic or Megasonic Cleaning: Do not subject the ULPO to an ultrasonic or megasonic cleaning environment. Permanent damage or long-term reliability issues to the device may occur in such an event.
- Applying board-level underfill (BLUF) to the device is acceptable, but will cause a slight shift of few PPM in the initial frequency tolerance. Tested with UF3810, UF3808, and FP4530 underfill.
- + Reflow profile, per JESD22-A113D.





### **TEST CIRCUIT AND WAVEFORM**

#### **FIGURE 3. TEST CIRCUIT**



#### FIGURE 4. WAVEFORM<sup>(4)</sup>



#### Notes:

4. Duty Cycle is computed as Duty Cycle = TH/Period

### **TIMING DIAGRAMS**

#### FIGURE 5. STARTUP TIMING<sup>[5, 6]</sup>



#### T\_start: Time to valid clock output from power on

#### FIGURE 7. STANDBY TIMING<sup>[6]</sup>





#### FIGURE 6. RESUME TIMING<sup>[6, 7]</sup>



time ST pin crosses 50% threshold

#### Note:

5. ULPO supports no runt pulses and no glitches during startup or resume.

Supports gated output which is accurate within rated frequency stability from the first cycle. 6.





### DIMENSIONS AND PATTERNS

### PACKAGE SIZE – DIMENSIONS (UNIT:MM)

1.5 X 0.8 MM



#### RECOMMENDED LAND PATTERN (UNIT:MM)



(soldermask openings shown with heavy dashed line)

Recommended 4-mil (0.1mm) stencil thickness

#### **REFLOW SOLDER PROFILE**



| IPC/JEDEC Standard                  | IPC/JEDEC JESD22-A113D |
|-------------------------------------|------------------------|
| Moisture Sensitivity Level          | Level 1                |
| TS MAX to TL (Ramp-up Rate)         | 3°C/second Maximum     |
| Preheat                             |                        |
| - Temperature Minimum (TS MIN)      | 150°C                  |
| - Temperature Typical (TS TYP)      | 175°C                  |
| - Temperature Maximum (TS MAX)      | 200°C                  |
| - Time (tS)                         | 60 - 180 Seconds       |
| Ramp-up Rate (TL to TP)             | 3°C/second Maximum     |
| Time Maintained Above:              |                        |
| - Temperature (TL)                  | 217°C                  |
| - Time (TL)                         | 60 - 150 Seconds       |
| Peak Temperature (TP)               | 255°C Maximum          |
| Target Peak Temperature (TP Target) | 250°C                  |
| Time within 5°C of actual peak (tP) | 20 - 40 seconds        |
| Max. Number of Reflow Cycles        | 3                      |
| Ramp-down Rate                      | 6°C/second Maximum     |
| Time 25°C to Peak Temperature (t)   | 8 minutes Maximum      |





### **ORDERING INFORMATION**



Notes: Contact PETERMANN-TECHNIK for other drive strength options that result in different rise/fall time for any given output load.

## EXAMPLE: ULPO-18-1508-S-100-W-6.144MHz-T-S

### PLEASE CLICK HERE TO CREATE YOUR OWN ORDERING CODE





### **REVISION HISTORY**

| REVISION | RELEASE DATE | AMENDMENTS SUMMARY                                                                                                                                                                                                                                                                                                                            |
|----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00       | OKTOBER 2015 | + Initial Data Sheet (SPEC 01/REV.00)                                                                                                                                                                                                                                                                                                         |
| 01       | MARCH 2016   | <ul> <li>Revised initial tolerance, current consumption, standby current, input high/low voltage for ST, input pull-down impedance, startup/resume time and RMS period/phase jitter in Table General Data.</li> <li>Added standard additional operating temperature range (-40°C to 105°C)</li> <li>Added typ. current consumption</li> </ul> |
| 02       | JUNE 2018    | <ul> <li>+ Added 2.25V - 3.63 V option</li> <li>+ Revised Current Consumption</li> <li>+ Revised Dimensions and Patterns</li> </ul>                                                                                                                                                                                                           |



## PREMIUM QUALITY BY PETERMANN-TECHNIK



OUR COMPANY IS CERTIFIED ACCORDING TO ISO 9001:2015 IN OCTOBER 2016 BY THE DMSZ CERTIFIKATION GMBH AND CERTIFIED ACCORDING TO 14001:2015 IN MARCH 2018 BY SEQ-CERT.

THIS IS FOR YOU TO ENSURE THAT THE PRINCIPLES OF QUALITY MANAGEMENT ARE FULLY IMPLEMENTED IN OUR QUALITY MANAGEMENT SYSTEM AND QUALITY CONTROL METHODS ALSO DOMINATE OUR QUALITY STANDARDS.

© PETERMANN-TECHNIK GmbH 2018. The information contained herein is subject to change at any time without notice. PETERMANN-TECHNIK owns all rights, title and interest to the intellectual property related to PETERMANN-TECHNIK's products, including any software, firmware, copyright, patent, or trademark. The sale of PETERMANN-TECHNIK products does not convey or imply any license under patent or other rights. PETERMANN-TECHNIK retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by PETERMANN-TECHNIK. Unless otherwise agreed to in writing by PETERMANN-TECHNIK, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.